If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+y-25=0
a = 1; b = 1; c = -25;
Δ = b2-4ac
Δ = 12-4·1·(-25)
Δ = 101
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{101}}{2*1}=\frac{-1-\sqrt{101}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{101}}{2*1}=\frac{-1+\sqrt{101}}{2} $
| 5(x+2)=4(x+6 | | 80+40=2x+30 | | 0=t^2-10t+21 | | 0=3t^2-6t+6 | | 48k-30=270 | | /0.02x+0.05(20–x)=0.01(79) | | 0=t^2-2t+2 | | 1.5/2=n/8 | | x+102=180;x=78 | | |2m-3|=9 | | 6x25=4x+15 | | 3(2x-3)=-2(3x-2) | | -4(x+2)+6=-2 | | 3(2x-3)=-2(3x-2 | | 300=60x | | z²+4z+8=0 | | 4+x=2x–12 | | y/6-3.6=-22.8 | | 3x²-14x-5=8 | | x2=361100 | | x+4=2(x+4 | | 6(x-3)-4=22 | | 4(5x+6)=-33+37 | | 3/2+5/4t=9/8t | | (0.04-x)^3=0 | | 14+4x-22=-9(2-×)+5x | | 15=x/0.5 | | 4(3x-5)+8.57=+9 | | x+5+21=180 | | 14/x+18-2=18 | | 5r−2=6r+5 | | 5x-11=42^2 |